AD=A096 118

UNCLASSIFIED

MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE-=ETC F/6 13/9
AUTOMATIC PLANNING OF MANIPULATOR TRANSFER MOVEMENTS.(U)

DEC 80 T LOZANO-PEREZ NO0D14=77=C=0389
Al=M=602

N

. o SECURITY CLASSIFICATION OF TNWI’GE'MM! ots !‘r’mnd)

A IONS
REPORT DOCUMENTATION PAGE BEF D R N RM
1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
s 4
Al Memo # 606 A)- %1 Py 4« ,ﬂ}
-] TITLE (and Subtitle) 1% TyrPE OF REPORT & PERIOD

J'V'CRED
Automatic Planning of Manipulator Transfer .{ Memorandum /tl,/d

Movements ‘ r o S. PERFORMING ORG. REPORT NuueTR

—S

I,LQQTRACT OR GRANT NUMBER(s)

e oY
C»-[""Tomas Lozano-Perez | {V/ir NBOO14- 77 C,038§}

}
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENRT, PROJECT, TASK
Artificial Intelligence Laboratory , AREA & WORK UNIT NUMBERS
545 Technology Square
Cambridge, Massachusetts 02139

11. CONTROLLING OFFICE NAME AND ADDRESS SN 2. RZPORT DATE

d< THOR(s)

ApA096118

Advanced Research Projects Agency (/ Dec emtzar IQQQJ
1400 Wilson Blvd ~ 3. NUMBER OF FAGES
Arlington, Virginia 22209 49

14. MONITORING AGENCY NAME & ADORESS({{ different from Controlling Office) 18. SECURITY CLASS. {of thie report,
Office of Naval Research e UNCLASSIFIED
Information Systems .- /.
Arl ington, Virginia 22217 ‘/ :.,;--—/ 1Sa 2CEHCé.DAStIEFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)
Distributiqglpf this document is unlimited.
7 e A

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, {1l different from Report)

g 18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverae aide il necessary and identlly by block number)

Robotics

Collision Avoidance
\ Path Planning
. Grasping

\f

2@‘ -ABSTRACT (Continue on reverse slde If necessary and identity by dlock number)

\'This paper deals with the class of problems that involve finding where to
place or how to move a solid object in the presence of obstacles. The
solution to this class of problems is essential to the automatic planning of
manipulator transfer movements, i.e. the motions to grasp a part and place
it at some destination. This paper presents algorithms for planning
manipulator paths that avoid collisions with objects in the workspace and foJ
choosing safe grasp points on objects. These algorithms allow planning
transfer movements for cartesian manipulators. The apbroach is based on . ’//

—

B FILE COP

DD , 55" 1473 eoimion oF 1 wov s 1s onsoLeTE UNCLASSIFIED B L)Z\hj

S/N 0:02-014- 6601 |

Yz v

SECURITY CLASSIFICATION OF TKIS PAGE (When Dats Bntered)

20. A method of computing an explicit repregentation of the manipulator configurations {
- ’that would bring about a collision [e7]. i

, .

\

MASSACHUSETTS INSTITUTE OF TECHNOILOGY
ARTIFICIAL INTELLIGENCELABORATORY

A.L Memo No. 606 December, 1980

Automatic Planning of Manipulator Transfer Movements

(33 l '
F'omas Lozano-Perez

ABSTRACT. 'I'his paper deals with the class of problems that involve finding where to place or how

to move a solid object in the presence of obstacles. The solution to this class of problems is cssential
to the automatic planning of manipulator transfer movements, i.c. the motions to grasp a part and
place it at some destination. This paper presents algorithms for planning manipulator paths that
avoid collisions with objects in the workspace and for choosing safe grasp points on objects. These
algorithms allow planning transfer movements for cartesian manipulators. The approach is based on
a method of computing an explicit representation of the manipulator configurations that would bring

about a collision [27].

Acknowledgements. This report describes rescarch done at the Artificial Intelligence Laboratory of the

Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence rescarch is
provided in part by the Office of Naval Rescarch under Office of Naval Rescarch contract N00O14-
77C-0389.

1 Introduction

1. Introduction

An important goal of rescarch on programming languages for computer-controlied manipulators
is a language in which assembly operations can be concisely described. ‘Two major approuches to
manipulator programming have been identified [34):

1. Explicit programming — in which the yser specifics all the manipulator motions needed to

accomplish a task.

2. Model-based programming — in which the user specifies geometric models of parts and a
description of the task in terms of these modcls. The detailed manipulator motions arc derived

by the asscmbly system from these specifications.

‘This paper presents algorithms for some of the central geometric problems that arisc in the mmodel-
hased approach to manipulator programming. In particular, this paper deals with the class of
problems that involve finding where (0 place or how to move a solid object in the presence of
ubstacles. 'The solution to this class of problems is essential to the automatic planning of manipulator
transfer movements, i.c. the motions to grasp a part and place it at some destination. For example,
planning transfer movements requires the ability to plan paths for the manipulator that avoid colli-
sions with objects in the workspace and the ability to choose safe grasp points on objects. The ap-
proach to these problems described here is based on a method of computing an explicit representation
of the manipulator configurations that would bring about a collision [27].

Several model-based manipulator systems have been described in the recent literature: Al [10]
[46], Autopass [24] {28] [50]. 1. AMA [25] {26] and RAPT [38) [39} {40]. Thesc are experimental systems,
currently under development' . Work on the model-based aspects of Al has focused on techniques
for making coding decisions in manipulator programs. ‘The decisions arc made among a fixed sct of
strategics so as to minimizc estimated cxecution times and so as to bring cstimates on the accuracy
of part positions within spccificd bounds. A central technical issue in this approach is deriving the
accuracy cstimates from geometric relationships and local accuracy information. RAPT has focused
on the specification of manipulator programs by specifying the desired symbolic spatial relation-
ships among objects. These relations are then translated into algebraic constraints on the position

IThe AL language, as originally described, includes explicit as well as model-based programming capabilities. The former
are currently available, while the latter are still in the experimental stage.

2 The “Pick and Place” Synthesis Problem

parameters of the objects, which can be solved by symbolic manipulation, These algebraic solution
techniques are also used to complete the specification of partially specified actions so as to achieve
the desired relationships. Implementation work on 1LAMA and Autopass has focused on techniques
for planning collision-free motions, c.g. grasping and parts transfer motions, using polyhedral object
models. The techniques reported in this paper are extensions of the Autopass obstacle avoidance
algorithm and .AMA’s grasping stratcgies.

A number of important problems relevant to model-based manipulator programming have been
addressed independently of any manipulator system, for example the problem of specifying com-
pliant motion strategics based on geometric and kinematic models of a task [30), the sclection of
grasping positions [5] [31] {35} {51}, and the problem of collision detection and collision avoidance
among obstacles [3117] [12] [331147).

The algorithms discussed in this paper arc bascd on previous work on obstacle avoidance algo-
rithms. In particular, [48] [49] first formulated the obstacle avoidance problem in terms of an obstacle
transformation which allows treating the moving object as a point. A similar transformation was also
used in [1] {2] [4] [45] for the template layout problem: related applications arc aiso discussed in [11]
[16]. Generalizations of thesc obstacle transformation techniques and a review of related work can be

- found in {27} and [28]. Other approaches to automatic obstacle avoidance are reviewed in [23] {48).

2. 'The "Pick and Placce” Synthesis Problem

‘The most common transfer movements are of the "pick and place™ type, consisting of (1) moving
the manipulator from its current configuration? 1o a grasp configuration on some object, P, (2) grasp-
ing P, and (3) moving P to some specified configuration. The "pick and place” synthesis problem is
that of deriving the manipulator motions that will carry out a "pick and place” transfer movement,

given as input the following data:

1. agcometric description of the manipulator and the objects in the workspace,

1. the current configurations of the manipulator and the objcects in the workspace,

2Configuration will be used here to refer to the combined position and oricntation of an object as well as to the set
of joint paramcters specifying the arrangement of manipulator links.

© e e - SO e

3 The “Pick and Place” Synthesis Problem

3. the desired final configuration of P, and

4. (Optional) the grasp configuration on P.

‘This paper focuses on the geometric aspects of the "pick and place” synthesis problem. For

examplc, when the grasp configuration is known, the "pick and place” synthesis problem is cquivalent
to finding collision-free paths for the manipulator and P between the configurations in items 2, 3
and 4 above; when the grasp configuration is unknown, there is the additional task of choosing a

configuration such that:

1. the manipulator's fingers are in contact with P,
2. the manipulator does not collide with ncarby objects,

3. the configuration is reachable, and

4. the object is stable in the manipulator’s hand.

The first three conditions reflect geometric constraints on the manipulator configuration, relative to P A

and to other objects in the workspace. ‘The stability condition reflects aspects of grasping beyond the

purcly geometric, but when P is small relative to the manipulator hand and when parts mating cffects
are ignored, then stability considerations can typically be reduced to gcometric heuristics (sce Scction
9.6).

‘The geometric aspects of "pick and place” can be formulated in terms of two fundamental spatial

planning problems [27), Findspace and Findpath, which occur in many applications. The definition of

these basic problems are presented below for the case of polyhedral objects.

Let R be a convex polyhedron that bounds the workspace and which contains kg other, possibly

overlapping, convex polyhedra B; designated as obstacles. Let A, the object being moved, be the

union of k4 convex polyhedra A;,i.c. A = Uf;, A;.

1. Findspace — Find a configuration for A, inside R, such that ViVj:A; N B; = @. This is

called a sqfe configuration.

2. Findpath — Find a path for A from configuration a to configuration g such that A is always
in R and A never overaps any of the B;. "This is called a sqfe path.

4 The C'space Approach to Spatial Planning: Overview !

Clearly, "pick and place” with known grasp configuration can be viewed as a sequence of two
Findpath problems. In addition, the configurations which are legal candidates for grasping can be
derived from solutions to the Findspace problem.

The reduction of the "pick and placce” problem to these more fundamental gcometric problems
assumes that the locations of all objects are known to high accuracy and that the path of the
manipulator can be controlled to the same precision. In a realistic environment, there is always uncer-
tainty in the positions of objects and crror in the control of the manipulator. Scction 10 discusses the

cffects of uncertainty.

3. The Cspace Approach to Spatial Planning: Overview

In this scction, an overview of the Configuration Space approach to spatial planning will be
presented: further details can be found in [27).

The position and oricntation of a rigid solid can be specified by a single 6-dimensional vector,
called its configuration. ‘The 6-dimensional space of configurations for a solid, A, is called its
Cuonfiguration Space and denoted Cspaces. For example, a configuration may have one coordinate
valuc for cach of the z, y, z coordinates of a sclected point on the object and one coordinate value for
cach of the object’s Fuler angles [21]. 1n general, an n-dimensional configuration space can be used
o model any system for which the position of every point on the object(s) can be specified with n

parameters. An example is the configuration of an industrial robot with n joints, where n is typically 5

or 6. In Capace,, the sct of configurations of A where A overlaps B, i.e. AN B 5% 8, will be denoted
CO(B). the Cspace, Obstacle duc to B. Similarly, those configurations of A where A is completely
inside B, i.c. A C B, will be denoted Cli(B), the Cspacey Interior of B. Together, these two
Cspace, constructs embody all the information needed to solve Findspace and Findpath problems.

Note that CI4(B) = —CO(—B), where — X denotes the set complement of X in R.

3.1. Fixed Orientation of A

In two dimensions, if the oricntation of a convex polygon A is fixed, Cspace 4 is simply the (z, y)

planc. This is so because the (z, y) position of some reference vertex rv, is sufficient to specify the

L - , - N) |

5 ‘The C'spacc Approach o Spatial Planning: Overview

Figure 1. The Cupace 4 obstacle due to 13, for fixed oricntation of A.

polygon’s configuration. ln this case, the presence of anotier convex polygon B constrains rup to
be outside of CO4(B). a larger convex polygon, shown as the shaded region in Figure 1. Since
CO \(B). in this case, is a sct of (z, y) values, it is denoted COY¥(B). Similarly, if A and B are three-

dimensional polyhedra in fixed orientations, then the Cspace obstacles are denoted CO%Y*(B). Thus,
the Findspace problem for polygons, with fixed oricntation, can be transformed to the equivalent
problem of placing rv, outside of COZ¥(B), but inside CIZ¥(R). Similarly, for multiplc obstacles B;,
a location for A is safc if and only if rv, is not inside any of the CO¥(B;), but is inside CIZY(R).

If the orientation of A is fixed, then the Findpath problem for the polygon A among the B; is
cquivalent t the Findpath problem for the point rus among the CO%Y(B;). When the COZ¥(B;)
are polygons, the shortest® safe paths for ru, are piccewise lincar paths connecting the start and the
goal via the vertices of the COZY(B) polygons, Figure 2. Therefore, Findpath can be formulated as a
graph scarch problem. The graph is formed by connecting all pairs of vertices of Cspaces obstacles
(and the start and goal) that can "sce" cach other, i.e. can be connected by a straight line that does

not interscct any of the obstacles. The shortest path from the start to the goal in this visibility graph]

3This assumes Fuclidean distance as a metric. For the optimality conditions using a rectilinear (Manhattan) metric, see
[22).

e —————— - — _____.________..__..____.J , ,

6 ‘The C'space Approach o Spatial Planning: Overview

Figure 2. This figure illustrales the Findpath problem and its formulation using Cspacc obstacles. Note
that the shortest collision-free paths connect the origin and the destination via the vertices of the C'spaces
obstacles.

(Vgraph) is the shortest safc path for A among the B, [28]). ‘This algorithm solves Findpath problems
when the orientation of A is fixed. But, because they require moving A along obstacle boundaries,

shortest paths are very susceptible to inaccuracies in the object models.

The approach to Findspace and Findpath described above gencralizes to problems involving
three dimensional polyhedra with fixed orientation. The generalization requires the use of a three-
dimensional Cspacey, representing the space of (z,y, z) positions of rus. In this Capace, the
obstacles are also polyhedra, denoted CO3Y*(B). However, the Vgraph algorithm has scveral addi-
tional drawbacks when the obstacles are three-dimensional:

1. Shortest paths do not typically traverse the vertices of the CO%¥*(B;).

2. There may be no paths via vertices, within the enclosing poiyhedral region R, although

other types of safc paths within R may exist.

‘These drawbacks may be alleviated by introducing additional nodes in the Vgraph which do not

correspond to vertices [28]. An alternative strategy for finding safe paths among two- or three-

dimensional C'space, obstacles is discussed in Section 7.

L_-—____________ ~ — o —————————

7 The Cspace Approach 1o Spatad Plaaning: Ovenview

3.2, Algorithms for CO{Y*(B)

‘The central operation in the Cspace approach to Findspace and Findpath in two and three
dimensions is computing CO*¥(B) and CO{"*(B) respectively. If A and B are convex polyhedra, it is

simple to show [27] that
CO*(B)=B6& (A = conv(vert(B) - vert((/\)u))

where conv(X) is the convex hull of X [14]. vert(X) is the sct of vertices of the polyhedron X,
XY ={z—y|ze& Xandy € Y} and (X)g means the polyhedron X in its initial
configurations, where ruy is at the origin. This result and the existence of O(n log n) convex hull
algorithms for finite scts of points in R* [41], lcad dircctly to an O(v? log v) algorithm for CO*¥*(B),
where v = |vert(A)] + |vert(B)]. The result also holds when A and /3 are convex polygons, but more
cfficient algorithms exist for this case. In particular, an O(v) algorithm for CO{¥(B) is described in

[27).

3.3. Variable Orientation of A

When A is a three-dimensional solid which is allowed to rotate, CO4(B) is a complicated curved
object in a six-dimensional Cspacey. Rather than compute these objects directly, the approach taken
here is to usc a sequence of two- and threc-dimensional objects to approximate the high-dimensional
C'space, obstacles. In particular, a six-dimensional Cspace, obstacle for a rigid solid can be ap-

proximated by projections of its (z, y, 2)-slices. A j-slice of an object C € R™ is defined to be:

{(ﬂly---;ﬂn)ecl'HSﬂjsyj}

Where v; and '-/J arc the lower and upper bounds of the slice, respectively. Then, if K is a set of
indices between 1 and n, a K -slice is the intersection of all the g slices for j € K. Notice that
a IC-slice of C is an object of the same dimension as C. Slices can then be projected onto those
coordinates not in K to obtain objects of lower dimension.

Figure 3 shows a two-dimensional example of slice projection. The abjects shown shaded repre-

sent the (z,) projection of three 0-slices of CO4(13) when A and B are convex polygons. These slices

8 Ihe C‘space Approach to Spatial Planning: Overview

—
N

p—"":

{

\V
\ :
/

o
0

Figure 3. Slice projections of (Capace 4 obstacles computed using the (r, y)-arca swept out by . over a
range of @ salues Lach of the shaded obstacles is the (1, y)-projection of a 0-siice of €'O4(13). The figure
also shows a polyeonal approximation 10 the slice projection and the polygonal approximation to the swept
volume from which il derives.

represent configurations where A overlaps B for some oricntation of A in the specificd range of 6.
In [27] is a proof that these slice projections arc cquivalent to the CO™ of the arca (volume) swept
out by A over the range of orientations of the slice, Note that approximating the swept volume as a
polyhedron leads to a polyhedral approximation for the projected slices of the Cspace,y obstacles, as

shown in Figure 3.

Slice projection has two important propertics:
1. A solution to a Findspace problem in any of the slices is a solution to the original problem,

but since the slices arc an approximation to the C'space,4 obstacle, the converse is not neces-

sarily true.

9 ‘The ("space Appioach to Spatial Planning: Overview

=7

v

1
[
v
L]
/ 7 As

Figure 4. An illustration of the Findpath algorithm using slice projection described by Lozano-Perez and
Wesley in 28] A number of slice projections of the ¢ ‘space obstacles are constructed for different ranges
of orientations of A. ‘The problem of planning safe paths 0 (ke high-dimensional (’space 4 is decomposed
inio (1) planning safe paths via 'O ventices within cich shee projecton and (2) moving between slices, at
confligurations that arc sale in both slices. .y represents -4 i its imttal configuration. A3 represents A in its
tinal configuration and .1, 15 a simplc polyhedral approximation 1o the swept volume of A between ils initial
and final orientation.

2. The siice projection of a Cspace, obstacle can be computed, by using the swept volume

opcration, without having to compute the high-dimensional Cspace, obstacle, sce Section 5.

When rotations of A are atlowed, the slice projection operation can be used to extend the Vgraph
algorithm described carlier to find safe (but sub-optimal) paths [28]. A number of slice projections
of the Cspace, obstacles are constructed for different ranges of orientations of A. The problem of

planning safe paths in the high-dimensional C'space,y is dccomposed into:

A

1. planning safe paths via the vertices of C'space 4 obstacles within each slice projection, and

2. moving between slices, at configurations that arc safc in both slices.
<

10 indpath for Cariesian Manipulators

ONOXOXO

Figure 5. Models of objects are structured as trees of convex polvhedra: internal nodes represent the union
of their sub-trees. Linked polyhedra are used to represent manipulators; internal nodes represent joints and
the Ieaves represent links. ‘1he nesting of sub-trees in the models of linked polyhedra reflect the cascading
clfect of joint motions.

Both of these types of motions can be modelled as links in the Vgraph, therefore the complete algo-
rithm can be formulated as a graph search problem. This approach is illustrated in Figure 4. However,
since the obstacles are three-dimensional, the Vgraph algorithm is subject to the drawbacks described

carlier.

4. Findpath for Cartesian Manipulators

This section overvicws an implementation? of the Findpath algorithm, for cartesian manipulators
(sce definition below). Sections 5 through 8 present a more detailed description of the implementation.

The system inputs are:

“The current implementation is written in LISP for the MIT LISP Machines.

11 T'indpath for Canesian Manipulators

"

Figure 6. A schematic representation of the link arrangement in two types of existing cartesian manipulators.

1. A polyhedral model of the workspace — wherc each object is represented by a tree of

convex polyhedra, sce Figure 5(a).

2. A polyhedral modeci of the manipulator — represented as a sct of link bodies connected by ;

fotary Or prismatic joints, sce Figure 5(b).

3. A kincmatic modecl of the manipulator — currently, partly embedded in proccdurc;'\vhich

apply to the polyhedral model and partly in the model structure.

4, A start and a goal configuration for the manipulator.
The system output is a safe path from the start to the goal configurations of the manipulator. The
paths are composed of a sequence of linear segments in the C'space of the manipulator.

The implementation described here is limited to cartesian manipulators, i.c. those having three

12 Computing the C'space 4 Obstacles

perpendicular translational degrees of freedom corresponding to the z, y and z axcs and up to three
rotary degrees of freedom, usually centered at the wrist, Figure 6 illustrates two different types of
cartesian manipulators. The restriction to cartesian manipulators allows the usc of the COZ¥*(B)
algorithm described in Section 3.2 as the main tool for capturing path constraints.

‘T'he Findpath algorithm carrics out the following steps in turn:

1. Constructing the Cspace,, obstacles — The slice projections of the Cspace, obstacles

approximate the constraints on the configurations of the manipulator duc to the presence of

objects in the manipulator’s workspace, see Section §.

2. Representing free space — Once the Cspace, obstacles are known, the system computes
a decomposition of the space outside these obstacles into convex polyhedral cells; these
polyhedra arce then linked into a graph structure called the Free Spice Graph. Each node of the
graph represents a free space cell and a link between cells indicates that they touch or overlap,

see Scction 6.

3. Scarching for a safe path — The Free Space Graph is scarched to locate a cell path, a
connccted set of free space cells that join the origin and the destination. From the cell path, the

system derives a fine path, a piccewise lincar path in the manipulator’s Cspace, see Scction 7.

5. Computing the Cspace,4 Obstucles

‘The first and most important step in the Findpath algorithm is that of computing the Cspace,
obstacles arising from the presence of objects in the workspace. The Cspace, currently used by the
system is the seven dimensional joint space of the manipulator, i.e. z, y, and 2 displaccments, the
three wrist rotations and the finger opening. The Cspaceq obstacles are complicated objects in this
high-dimension space. To avoid having to deal directly with these objects, the system makes use of
slice projection to approximate the Cspace, obstacles by a sct of three-dimensional obstacles.

The COLY*(B) algorithm of Scction 3.2 computes an (z, y, 2) cross-scction of COA(B) for a
specified oricntation of A. But, this algorithm can be adapted to computc the (z, y, z)-slice projections
of CO,(B). The construct that 1clates slice projections to the cross-sections is the swept volume of

an object. The swept volume of A is the union of (A)g, i.c. A in configuration a, for a within the

—

‘e v whmm

13 Compunng the Cspace y Obstacles

configuration range denoted by [c,], . where ¢ and ¢ arc configurations of A and K is a subsct of
the configuration parameters. A configuration a is in the range [c, ¢];, if. for cach ¢ in K, the §*b

th parameters of ¢ and ¢. For example, if ¢ and ¢ are of the form

parameter of a s between the ¢
(81, B2, By) and K = {3}. then the swept volume of A over the range [c,] refers to the union of
A over a set of configurations differing only on 85, The swept volume of A over this configuration
range is denoted Ale,) . It can be shown [27] that the (z, y, 2)-slice projection of CO,(B) over the
orientation range contained in [¢, ¢}y, is the same as CO;’{CZ’ a]K(B)-

In summary. the computational requirements of the slice projection technique are:

1. Choosing a decomposition of the orientation ranges of the cartesian manipulator into sub-

ranges, [¢, €] . to be used for slice projection.
2. Computing polyhedral approximations to Alc, ¢ for cach orientation range.

3. Computing CO;‘{(?,(,]K(BJ-) for cach obstacle B; and cach oricntation range.

‘This section addresses these issues. First we assume that the orientation ranges defining the slices are

given; the discussion of choosing slice parameters will be taken up at the end of the section.

3.1. Computing the Swept Volume for Linked Polyhedra

‘The swept volume of a polyhedron A over a range of translations is another polyhedron. Let
T C I be the sct of configuration parameters corresponding to the translations of A. If A is a convex
polyhedron and the range of positions of the reference vertex of A over the range of translations
[¢, €]k can be represented as a convex polyhedron V, then Afe,c]lr = APV where X P Y =
{z+ylz€ Xandy € Y }. Since A @ V = conv(vert(A) @ vert(V)), this leads to a direct

algorithm for computing the swept volume for translation. [f the range of configurations includes

' rotations then the swept volume is not a polyhedron. In the rest of the paper it is assumed that

a polyhedral approximation to the swept volume is always available. The Appendix describes an

algorithm to compute a simple approximation to the swept volume of a convex polyhedron under
pure rotation.

The swept volume of A, a rigid object, resembles another rigid object with the same number

of degrees of frecdom. But for manipulators, modelled as linked polyhedra, the situation is more

14 Computing the ¢ ‘spece Obstacles

Figure 7. Changes in the second joint angle from 0, 10 0, causcs changes in the configurations of both link
Ay and link Aa.

complex. Linked polyhedra are kinematic chains with polyhedral links and prismatic or rotary joints.
The relative position and oricntation of adjacent links, A; and A, ¢, is determined by the £™* joint
parameter (angle) [36]). The set of joint parameters of a linked polyhedron completely specifics the

position and orientation of alt the links.

Note that for « linked polyhedron, the position of link j typically depends on the positions of ‘
links k < 3, which are closer to the base than link . Let K = {5}, ¢ = (6:;). ¢ = (). and [¢, i 3
define a range of configurations differing on the j™ Cspace parameter. Since joint § varics over a
range of valucs, links { 2> 5 will move over a range of positions which depend on the values of ¢ and
¢, as shown in Figure 7. The union of cach of the link volumes over its specified range of positions is
the swept volume of the linked polyhedron. The swept volume of links 7 through n can be taken as

defining a new 3 link. The first 7 — 1 links and the new j™ link define a new manipulator whose

configuration can be described by the first 7 — 1 joint parameters. On the other hand. the shape of the

new link 5 depends not only on the K-parameters of ¢ and ¢, i.c. 8, and 0. but also on 6 for | > j.
This implicit dependence on parameters of ¢ and ¢ that arc not in K is undcsirable, since it means
that the shape of the new 3% link will vary. Letiing K = {7,...,n}, then the shape of the swept
volume depends only on the K-parameters of ¢ and ¢, while its configuration is determined by the

(I — K)-parameters. A swept volume that satisfics this property is called displaceable.

15 Computing the (“space 4, Obslacles

. A=(AuAz)cel

Figure 8. Computing the swept volume for linked polyhedra. If [c,¢’], involves ranges of configurations of
the second and third link, first compute the swept volume for the third link and then the swept volume for
the union of the second link and the swept volume of the third link.

Given an operation for computing (a polyhedral approximation to) the swept volume of a
polyhedron, sce Appendix, then this operation is applicd to computing the swept volume of linked

polyhedra. The swept volume Afe, ¢} is computed by the following process, illustrated in Figure 8:

1. Let{ = n, where n > 0 is the number of links in the linked polyhedra, |I| = n; let
A" =9

2. Place A in configuration ¢;

3. LatA*=A"UA;:

4. Ifi € K thenlet A® = A®[e,),y i.c. update A* to be the swept volume of A® over the
range of £'# joint;

5. Lets = ¢ — 1. Ifs = 0 then stop, else go to step 3.

E
J

e e

- — . e aimn

—

16 Computing the Cspace 4 Obstacles

The swept volume obtained in this fashion can then be used t compute the COTYE . (B;).

5.2, Computing slice projections for C'space,y obstacles

If Ale, ¢} overlaps some obstacle B then, for some configuration a in the range [c,)i, (A)a
overlaps B. ‘The converse is also truc. If Ale, ¢] is displaccable. then CO ¢, (B) is the sct of
I — K projections of those configurations of A within [c, ¢]; for which A overlaps B. Equivalently,
CO (¢, (B) is the I — K projection of the [c, €], slice of CO,(B). If A is a cartesian manipulator
and K is the index set for the wrist rotations of the manipulator, then the configurations of the swept
volume are the (z, y, 2) positions of some point on the manipulator. The algorithm of section 3.2 can
be used to compute CO (B) and thereby compute the required slice projections of CO(B).

Given the swept volume of the manipulator model for a particular range of parameters [, ¢l
the next step is to compute the slices of all the Cspace obstacles for the manipulator over that range
1 of configurations: this st is denoted COSle, €/]. In previous discussions of the COZ¥*(B) algorithm

we have assumed that A and B were single polyhedra; we saw in the previous scctions that both

l the ubject and manipulator models are structured as part trees, whose lcaves are convex polyhedra,

‘The actual model of a manipulator or a part is the union of the fringe, i.c. the set of leaves, of the
corresponding part tree. Thus if A = Uf;, Aiand B = U;”’= , Bj. the following result can be used
in computing CO3¥*(B):

ka ks
COA(B) = U U CO/\i(Bj)v

t=| j==1

This result means that k4 X Ky applications of the COZY#(B;) algorithm must be carricd out to

compute COZ¥*(B) exactly. In the "pick and place” application, an exact model of all the Cspace

obstacles is not usually nceded since the manipulator will not move close enough to all the obstacles.
‘The amount of time needed to compute the COS can be reduced by simplifying the gcometric

madels of both the A; and the B; when appropriate. The current implementation uses a simple family

of succesively finer approximations for objects based on the part tree. Consider the part tree for

an object Bj, wherce cach of the Icaves of the tree is a convex polyhedron. Define a covering node

set recursively to be either (1) the set containing just the root of the part tree or (2) obtained from

17 Computing the ("spare y Obstacles

another covering node set by replacing some node, internal to the part tree, with all its descendants. If
cach internal node represents the union of all its descendants, then cvery covering node set is a com-
plete model of the object. In practice, internal nodes of the part tree store the bounding rectangular
solid® of the union of all its descendants instcad of the union itsclf. Thus, the family of covering
nude sets represents progressively more detailed models of the part [29). Using these approximations
reduces the number of applications of COY*(B,) nceded to compute the COS, since the number
of polyhedra in a covering node set is less than or cqual to that in the full fringe. In addition, it
can be used to simplify many of the individual computations, because when A and B are bounding
rectangular solids, computing CO’Y*(B) is trivial. In particular, if the bounding solids are represented
by the endpoints of their main diagonal, eg. A = (ay,a2) and B = (b}, b;), then COR¥*(B) =
(b1 — (a2 — ay), ba).

For simplicity, the current implementation uscs a three level part tree for the swept volume of
the manipulator and for the objects in the workspace. Each tree has a root node which models the
complete object by one bounding rectangular solid. T'he descendants of the root are bounding rectan-
gular solids for cach of the convex components of the model and the leaves of the tree are the convex
polyhedra whose union is the complete object model. ‘Therefore if the object is modelled as the union
of k convex polyhedra, the part tree has 2k + 1 nodes. Using this representation, CO#¥*(B) can be
modelled as a tree of similar structure with 2(k4 X &p3) 4+ 1 nodes. Any covering node sct of this
tree is an approximation to the Cspace 4 obstacle corresponding to B. In practice, the complete tree is
not computed at once, rather the simplest approximation, the bounding reclangular solid of the whole
object, is computed and successive covering node sets are computed as nceded. This is discussed

further in section 6.

5.3. Choosing the Slice Parameters

So far we have assumcd that the configuration ranges defining the C'space, slices were given as
input; in this section, the choice of ranges is discussed. ‘The primary choice is how large to make the

ranges, since it is this that affects the system's capability to use changes in the oricntation of the hand

SA boumding rectangular solid for a polyhedron is a rectangular solid whose cdges are parallel to the coordinate axes
and that complctely includes the polyhedron.

18 Computing the ¢ “apace 4 Obstacles

to avuid vbstacles. In particular;

1. ‘The larger the orientation range of a slice, the larger the manipulator’s swept volume, the
larger (and less accurate) the Cspace4 obstacles and the fewer the legal configurations and legal

motions of the manipulator.

2. The smaller the orientation range of slices, the larger the number of slices necded to cover

the Cspace and the more time needed to compute the COS and to scarch them for a path.

These conflicting cffects can be balanced by taking advantage of the fact that, for “pick and place”
motions, the accuracy requirements are higher near the start and the goal of the path, where the
manipulator is moving near obstacles, than along the rest of the path [28] [48] [49]. This suggests
defining slices with small rotation ranges centered around the orientations of the start and the goal;
slices with larger ranges may be used for the remaining orientations, This approach is used in the
current implementation. In particular, a COS is defined for the orientation of the manipulator in
the start configuration and one for the orientation manipulator in the goal configuration; these COS
correspond to slices with singular orientation ranges, i.c. where the upper bound of the range cquals
the lower bound® In addition, the total range of paramecters in Cspace,, is divided among some
number of other slices’ cach with non-singular ranges. Furthermore, slices with singular ranges are
defined for configurations at the intersection of the slice parameters of the "larger” slices. This last
type of slice allows moving between safe configurations in the "larger” slices,

Note that the computational burden of adding an extra slice is very low if bounding rectangles
arc uscd for objects. This sacrifices some of the potential mancuvering space, but gains a very large
increase in speed. This is the compromisce taken in the current implementation.

Motions within a slice with a singular orientation range arc limited to translations, while rotation
is legal within a slice with non-singular ranges, ‘Therefore, the classes of motions allowed by the
system are those composcd of translations interspersed with rotations, but where the rotations happen
in increments defined by the slices parameters. ‘This means that this approach may fail to find a safe

path in situations where:
8A slice with a singular range is the same as a crosssection.

TCurrently varying between 8 and 64.

-

19 Path Scarching and Free Space

1. all safe paths require rotations combined with translations at a finer resolution than that

allowed by the slice ranges, and/or

2. the orientation ranges chosen, although adequatc in sizc, do no match those required in the

problem.

These problems can be reduced, at the expense of more computation, by using more slices with
smaller ranges. But, there exists problems which require continuous rotation along a path. In practice,
most robotics applications do not usc the very crowded environments that require very high rotation
resolution for the “pick and place” motions. The reason for this is that safe paths in such environ-
ments arc very hard for humans to specify, are subject to positioning errors of the parts and are

difficult for most industrial robots to exccute reliably at medium or high speeds.

6. Path Scarching and Free Space

[faving computed the Cspace.y obstacies, it still remains for the system to find a path among these
obstacles. This section briefly touches on alternative stratcgics for finding safc paths.

Onc approach to finding paths among obstacles is to scarch for the shortest path between the start
and the goal, without considering other constraints. For example, the Vgraph algorithm described in
Scction 3 follows this approach. But, the approach has some important drawbacks. Shortest paths in
C'space4 move along the boundaries of the C'space, obstacles and are, therefore, very susceptible
to model inaccuracy and position error. This problem can be alleviated by adding a uniform "safety
margin” around the obstacles, but doing so might disqualify some feasible paths. Furthermore,
no cfficicnt algorithms currently cxist for finding optimal paths among three-dimensional obstacles.
Unlike the situation in two dimensions, there is no finite set of points through which shortest paths
arc guaranteed (o pass. Thus, algorithms would have to be bascd on iterative numcrical methods. For
these reasons, only heuristic algorithms for finding safe paths will be considered here, These heuristic
algorithms require less execution time and can be extended to consider criteria such as safety margins,
but they will not find the shortest path.

Another issuc is whether the path scarch is conducted using primarily a representation of the

Cspacea obstacles themselves, as does the Vgraph algorithm, or of the free space outside the

y

20 Path Scarching and I'ree Space

obstacles, as in [48]149]. Although these representations are equivakent, they lead to different heuristic
algorithms. The current implementation uses the free space style of algorithm becausc it simplifies
the formulation of different scirch heuristics. ¢.g. the use of variable resolution space representations
described below.

The reniinder of the section dedls with the free space representation technigue employed in the

Findpath implementation. Section 7 discusses the path search algorithm used on this representation.

6.1. A I'ree Space Represemation

The basic goals for a space representation are accuracy. speed and compactness. In addition,
it should facilitate heuristics for the sk at hand. 'The most important heuristic for a space repre-
sentation is to avoid excess detail (and therefore time spent) on parts of the space which do not affect
the operation. Therefore, the space representation should not have to maintain a perfectly detailed
maodel everywhere. Instead, it should have the capability of maintaining a rough mudel and be able to
selectively refine [48] [49] subscctions to be as detailed as necessary.

A number of proposals cxist for representations of space and objects in space [9] [25] {42]; most
of these divide the space into a set of cells. The proposals can be partially characterized along the
following dimensions:

1. Shapc uniformity — arc all cells equally shaped?

2. Size uniformity — are all cells the same size?

3. Orientation uniformity — are all cells oriented caiformly?

4. Ordcering principle — are the cells ordered into an array, multi-list, tree, or graph.

We will not consider representations which usc cells of uniforin shape and/or size, since they typically
require large numbers of cells to achieve sufficient accuracy® . Instcad, we usc a hybrid ccll repre-
sentation employing two types of cells: (1) rectangular solids aligned with the axes and (2) arbitrary
convex polyhedra. The idea is to use the simple rectangular cells away from obstacles where repre-
sentation cconomy is important and polyhedral cells where high accuracy, ¢.g. necar an obstacle, is

BUdupa (18} [49) employed a free space representation which used rectangular ceils of variable sizc. This approach is
adequate for motions that do not closcly approach the obstacles.

W e o e .M!

21 Path Scarching and I'ree Space

5 B
v

E2
E;
Es B
E, € A Es
Eq

Figure 9. ‘This figure illusirates, in two dimensions, the space represcntation employed in the implementation
of the Findpath algorithm. (a) A sample C'space, obslacle with its parnt representation. (b) The resulting
space representation. Rectangular nodes indicate mixed cells, round nodes indicate full cells, and triangular
nodes indicatc empty cells.

nceded.

The space representation described below is analogous to the part representation described
carlicr, cxcept that a new type of node is introduced. ‘The part tree represcntation uses rectangular
bounding cclls as intcrnal nodes and polyhedral cells as leaves. The leaves represent space that is
FULL, i.c. completely occupicd by an object. The internal cells represent MIXED space, i.e. cells
which are part FULL, part EMPTY. But, note that the part tree docs not have an explicit repre-
sentation of the EMPTY space. 'The space representation simply adds exp (2 EMPTY cells to the

22 Path Scarching and Free Space

parts tree representation. Then cach internal MIXED node becomes the union of its descendants.
In addition, the space representation introduces a new MIXED root node from which all the part
representations descend.

‘The space representation is built up starting with a bounding rectangular solid representing the
workspace, this is the first MIXED ccll. The descendants of this node are the MIXED cells cor-
responding to the toots of the trees representing cach of the CO4Y(B,), as described in Section 5.2
and a sct of EMPTY bounding rectangular solids representing the free space outside the MIXED
cells. The representation of cach MIXED cell can be further expanded into other EMPTY, MIXED
and IFULL. cells, culminating in a representation involving only EMPTY and FULL convex polyhedral
cells as leaves of the tree and MIXED cells as internal nodes, Figure 9. The polyhedral representation
of cach EMPTY cell must be computed so that it does not overlap any MIXED or FULL cells. As
with the part representation, any covering nodce sct of this tree represents a complete model of the
space, at some non-uniform resolution. This hybrid cell representation is based on a generalization
of the quad tree representation used for images 18] 117) 18] 120] [43] and the oct-tree representation of
objects [3).

The operations on the space representation described above are very cfficient when dealing with
bounding rectangular soiids. ‘The most expensive operation is when the volume difference of a
MIXED rectangular cell and a FULL polyhedral cells must be computed? ; this operation results in
a description of the EMPTY cells. However, this need only be done when high accuracy is required,
usually near the start and the goal of the path. Thercfore, the representation meets the criteria stated

at the beginning of the section.

6.2. Building a Free Space Graph

The process described in Section § produces a slice for cach Cspace, obstacle over cach of the
orientation ranges, [c;, ¢/« of the manipulator’s wrist. The set of slices for all obstacles over one
oricntation range is denoted COS|e;,)]y For cach of these COS;, a space representation is com-
puted, SR;, as described above. For cach of these SR;, a Free Space Graph is built, FSG;, this is

a graph where cach node is an EMPTY cell in the SR, and a link indicatcs that the cclls touch or

FThe current implementation of this operation uscs repeated applications of a cutting and capping operation {6}

Path Searching

overlap'® . In addition, it is necessary to add links to cach F'SG, that connect to nodes of other FSG;
whose rotation range overlaps that of FSG,. That is. for EMPTY cells C, € SR, and C; € SR, if
there is some configuration ¢ contained in both cells, then links must be placed between C; and C.
This is so because the existence of ¢ guarantees that it is possible to pass from any configuration in C;
t any in C; and viceversa while remaining outside all the obstacles in COS, and COS,. The resulting
compusite FSG is then scarched for a path, since cach path through the graph corresponds to a class

of safe paths in Cspace,q and vice-versa.

7. Path Searching

‘The Findpath problem is to find a path between two points, the start and the goal, while staying in
the free space. In the current implementation, this is carried out by the following steps:
1. Choose the largest EMPTY cell in any of the SR; cnclosing the start configuration.
Otherwise, choose some MIXED cell containing the start and cxpand the representation of
this MIXED cell into its constituent EMPTY, MIXED and/or FULL cells. 1f an EMPTY cell
contains the start configuration, stop, clse repcat. Note that this computes successively finer
modcls, i.c. successive coverirg node sets, of the specific area around the start without having
to expand the complete model or even any complete part tree. [no EMPTY cell is ever found,

the task is impossible since the start configuration causes a collision.
2. Perform step 1 for the goal configuration.

3. Construct a Free Space Graph as described in Scction 6.2. At this point, the Free Space
Graph is in its final form; the current implementation does not refine the space representation

further.

1%The current representation allows EMPTY cells 10 overlap cach other but not MIXED or FULL cells.

24 Path Scarching

4, Scarch for the shortest path in the I-ree Space Graph from the cell including the start to
that including the goal. The graph scarch operation can be carried out by any of the standard
shortest path algorithms [13]; the current implementation uses the A” algorithm [15). These
shortest path algorithms require that a weight be assigned to cach of the links of the Free Space
Graph c.g. indicating the time required to traverse the cells. How this may be done is discussed
below. If no path exists, this may be duc to the approximations and quantizations used in the

solution, see Section 7.3.

5. Choose a linc path contained in the ccll path. This problem is discussed in Section 7.2.

7.1. Assigning link Weights for the F'SG

‘The definition of an "optimal” path, or cven a "good" path, assumes some choice of performance
index. ‘T'he current implementation uses estimated time of travel along the path as the index. If
C'space,, is the manipulator’s joint space, then the time to travel between two configurations can be
cstimated as the maxiinum time for any of the joints to travel, at the maximum rated joint velocity,
between the joint scttings at cach configuration. The weights assigned to the links in the FSG should
therefore reflect the time needed to travel between two overlapping cells along the optimal path. Of
course, no weight assignment can actually do this since it requires knowing the complete optimal path.

A simple alternative is to assign to a link the estimated time of travel between the centroids of the
cclls that it connccts. This weighting function has the advantage of being very easy to compute. For
small cells it provides a good approximation of the actual time to traverse the cells, but for larger cells
it might overestimate or underestimate the actual time, see Figure 10. The current implementation
uscs the centroid weighting function, but does not divide the large EMPTY rectangular cells into
smallcr cells; this will be implemented in the near future,

A more complex weighting function, which would typically produce faster paths, is the following:
The weight on the link between cell C and C7 is assigned the time to traverse C' from p, the point
of entry to C, to p/, the point of entry into C’. The point p’ is the one on C N C' that minimizes

the distance'’ to the line between p and the goal. The initial C is the cell that contains the start

" Actually, the difference in time between the straight line path and one going through this point.

25 Path Scarching

Figure 18. ‘Two dimensional illusiration of filings of the controid weighting function. (a) Overcsti

when onc cell is farge, (b) underestimating because of limited connectivity, and (c) overestimaling becsuse

large overlap. The solid ling is the optimal path beiween cells, the dashed lines is the path that the function
~ would usc to cvaluate the distance between cells.

configuration and the initial p is the start configuration. Clcarly, this technique requires much more

computation that the centroid weighting described above. For most applications, the simpler centroid

function, together with cell splitting should suffice.

7.2. Choosinga Line Path

The scarch of the FSG produces a list of EMPTY Cspace, cells that touch or overlap; it is still
neccssary to choose a specific path, i.c. some curve, within thesc cclls. The simplest type of path
to choosc is a piccewisc lincar one, although the cclls simply place configuration constraints on the

manipulator along the path and any path satisfying thosc constraints)yill be safe. .

_ If the centroid weighting has been uscd for the links, it is nawrai to choose a piccewise linear
path that traverses the centroids of the celis. Of course, the straight line path between two centroids is
not guaranteed to remain within the cells and might therefore not be safe. Therefore an intermedise

configuration in the intersection between adjacent cells should be chosen, The centroid of the inter-
scction of adjacent cells on the path can be used for this purpose; this is the technique used in the

26 Examples

current implementation. Alternatively, this point could be chosen so as to minimize the deviation
from a straight line path between the centroids. If the cell size is small enough, such paths are

adequate for most tasks.

The more complex weighting scheme described carlier produces a sequence of entry points into
the cells which may be connected dircctly to obtain a path. Since the points arc contained in the

intersection of the cells, a straight tinc connecting them is guaranted to be in the cell.

7.3. Dealing with Path Search Failure

If the path scarch algorithm fails to find a safe path, the reason for failure could be one of the

following:

1. No safe paths cxist.
2. No safe paths exist at the quantization of oricntations chosen.

3. 'The approximations of objects by bounding rectangular solids has removed necessary

mancuvering space.

‘I'he last two causcs of failure may be overcome by decreasing the orientation quantization and/or
increasing the representation detail in the space representation, both at the cxpense of extra computa-
tion. This suggests the possibility of increasing the accuracy of the space representation when a path

scarch failure ocurrs. The current implementation doces not exploit this possibility.

8. Fxamples

This scction presents output from the implementation running on a simple example. The results

are collected in Figure 11.

a. The initial and final configuration of the model, including the manipulator model. Note

that the manipulator must rotate to exccute this motion.

—

start goal
As
f L/
E£;Si EE%%EEjAs .
r i
u\tj"J
C T 3j ‘ :

Figure lla

The start and goal configurations and the world model

27a

e

)
COA (T)

. 4 N\ -

\ oy

co, (T 3
o, (T) C
Ay / | :

Figure 11b

START COS: The Cspace obstacles for the manibulator in the
start configuration.

o A o M 1B wmns o eheee o

1

2]
|
D ‘ - Figure 1llc¢ - - o
; GOAL COS: The Cspace obstacles for the manipulator in the
? goal configuration.
| < :

2le

Figure 11d

The Cspace obstacles for the swept volume of the manipulator
over a range of configurations of the wrist.

21d

Figure 1lle
The Cell Path with superimposed Line Path

27e

Figure 11f
The Cell Path and Line Path superimposed on GOAL COS

27¢

e TE—

28 Choosing Grasp Configutations

h. ‘The COS for the start configuration. Fach convex solid in the figure is a representation of
COf\-'.’:(BJ). Note that most of these Cspace y obstacles are rectangular solids. except for those
arising from the interaction of the hand, A;. with block By and the fingers, Ay and A, with
the table. In these cases, the manipulator is so close to these obstacles that its configuration is
inside the bounding rectangular solid for the configuration vbstacles (In practice, the sides of
the bounding rectangular solid are displaced outward by some small €). 'This condition causces a

detailed expansion to be carried out,

¢. The COS for the goal configuration. In the goal configuration nonc of the obstacles nceds

10 be expanded in detail.

d. ‘The COS for one of the intermediate configuration ranges. This COS is defined for the
manipulator's swept volume over a range of orientations of the wrist and hand. Onc bounding
rectangular solid, A}, approximates the swept volume of the hand and fingers, A} U A; U A;.

‘The solids A4 and A5 remain unchanged.

e. 'The cell path and the linc path. This shows the cells from the various space representations
that compose the cell path. One group of cells correspond to free space for the initial
configuration, one large cell comes from the intermediate configuration (where the hand rota-
tion takes place), and the last group of cells correspond to the final configuration. The line
path shown gocs through the centroid of ecach of the cells and also through the centroids of
the intersection of adjacent cells on the path. Notice that because the cells are large, this path
strategy produces paths that move too far from the obstacles, This could be overcome by sub-

dividing the cells before finding the line path,

f. The ccll path supcrimposed on the start COS. This shows the relative placing of the free

cells relative to the obstacles.

9. Choosing Grasp Configurations

The preceding sections have discussed the problem of finding safe paths for the manipulator; this

is only part of the "pick and place” synthesis problem. The major remaining problem is choosing

29 Chousing Grasp Configurations

a grasp configuration on the part, P. For simple parts and non-cluttered environments, grasping is
amenable to simple ad-hoc solutions. As a step in the solution of this problem, we deal here with
choosing grasping configurations for relatively simple parts in cluttered environments. In this section,
a Cspace approach to this probiem is described, although no implementation of this approach to

grasping currently exists.

The grasping problem is related to the Findspace problem introduced in Section 3, insofar as it
involves choosing a safe configuration among a sct of obstacles. But, there are additional constraints

on the choice, for example:

1. the manipulator’s fingers must be in contact with P,
2. the configuration must be reachable, and

3. P must be stable in the manipulator’s hand, i.e. it will not slip in the hand during a motion.

‘The first two conditions, contact and reachability, reflect additional gecometric constraints on the sotu-
tion to the Findspace problem. The third condition, stability, reflects aspects of grasping beyond the

purely gecometric. Stability will be briefly discussed later in the section.

The approach to grasping described here is based on the onc described in [25] and [26]. The
basic idca is to build an explicit description of the set of configurations of the manipulator A for
which the inside of the manipulator’s fingers are in contact with specified surfaces of P. This set
of configurations is some subsct of CO,(P). call it G. Feasible grasp configurations arc those in
G, that do not causc any collisions with other objects in the workspace, i.c. that are outside all of
the CO4(B;). In this scction, the details of this approach are discussed. We make the following
simplifying assumptions:

1. The manipulator is cartesian and its hand is a parallel jaw, i.c. two parallcl fingers that move

along their common normal,

2. Only paralict planar surfaces, whose distance from each other is less than the maximum

finger opening, arc candidates for grasping. These are known as grasp surfaces.

These assumptions simplify the method for identifying feasible grasp configurations, while suggesting

its uscfulness and providing the foundation for a more gencral approach.

30 Chowsing Grasp Configurations

R 720

<

K

Figure 12. The definitions of P;, P;, F}, I, and H uscd in choosing grasping configurations.

9.1. Feasible Grasp Configurations

Let P; and P; be the paralicl faces'? of P to be grasped, and Fy and F; be the inside faces of
the manipulator’s fingers, Figure 12. Under the two assumptions stated above, when A grasps P, Fy
and F; are coplanar with P; and P; respectively. Under these conditions, the legal (z, y, 2) positions
of ru, are restricted to some plane H that is parallel to P; and P;. Let Ga(P;, Pj) be the set of
configurations of A for which ru, is in H and for which P;, P;, Fy, and F;, arc mutually parallel. Note
that G4(P;, P;) represents those positions and oricntations where A cbuld be when grasping P; and
P;., without specifying the distance between the fingers. Ga(P;, P;) is called the grasp set for P; and
P;.

Note that not all the configurations in GA(P;, P;) arc feasible grasp configurations, cither because

12Note that objects in the current implementation are modelled as unions of convex polyhedra. Convex polyhedra are
defined as the intersection of a finitc number of half-spaces, where each half-space is bounded by a plane. The portion
of cach bounding planc on the boundary of the polyhedron is a convex polygon, known as a face of the object

31 Choosing Grasp Configurations

the fingers are not in contact with the grasp surfaces or because the manipulator configuration causes a

collision with some other ubject. Therefore, we must impose two additional restrictions:

1. ‘Theinternal faces of the fingers must overlap the grasp surfaces.

2. ‘The manipulator must not collide with any other object in the workspace, i.c. the B;.

With these restrictions on the configurations in the grasp sct. we obtain the set of feasible grasp
configurations, called a feasible grasp set and denoted FG(P;, P;).

Define the configurations of Fy and F to correspond to those of the manipulator, i.e. each
position and orientation of these faces is characterized by the manipulator configuration which would
place them there. From these definitions it follows that COy-(P;) is the sct of those configurations of
A for which the F is in contact with P;. Furthermore, COy+(P,)NGa(P;, P;) are those configurations

for which the finger is in surface-surface contact with P;. Therefore, it follows that

FGA(P,, P,) = (CO4(P) N COpP;) N GAP,, P))) — | JCOAB)
2
In this definition, we must et P be onc of the B;. say By, so as to avoid collisions with P while
approaching a grasp configuration. but we must also allow A to contact P on the grasp surfaces. The
answer is to add a slight displacement inward to P; and P;, when computing CO(B,,). while using
the original definition in the computation of COp,(P;) and COpy(P;).

The feasible grasp sct, as defined above, is a volume in a six-dimensional Cspacey. We do not
have algorithms for computing this volume exactly. The algorithms of Secction 3 serve only to com-
pute slice projections of the Cspace, obstacles. It is clear that the same must be done for the feasible
grasp sct, namcly computing its slice projection for some range of oricntations. Such a slice would be
the set of (z, y, z) positions of A that, for some range of oricntations of A, arc in contact with P, but
outside all of the B;. Presumably, this requires using the slice projections of COp(P;), COp(P;), and
the CO(B;). A problem arises when trying to do this, because slice projections were defined over
simple oricntation ranges of the cartesian manipulator’s wrist defined in Section 5. These ranges are
not, in general compatible with the ranges of orientations that define G4(P;, P;). For a position of
rv4 on H, only a small range of oricntations will result in configurations that arc in G4(P;, P;), yet for

that position to be in a slice of FG4(P;, P;) it must be the casc that no oricntation within the slice’s

32 Chousing Grasp Conligurations

defining range causcs a collision. Therefore, few, if any, configurations in the grasp set will be feasible
grasp configurations.

‘The solution to this problem is simply to define a new sct of slices whose orientation ranges are
subsets of the orientation ranges in G4(P;, P;). Note that a configuration in such a slice alrcady
satisfics the oricnlh[ion constraints of the grasp sct. 'I'herefore, only the position constraints, i.c. that
the (z, y, 2) pusition be in H, need to be enforced to obtain the intersection of ¢ Cspace obstacle in
that slice with the grasp set. ‘This removes the need of computing the complete representation of the
obstacles, while simultancously avoiding the problems introduced by irrclevant orientations,

Cuoinputing the obstacle slices for orientations in the grasp set requires being able to compute the
swept volume of the manipulator over orientation ranges that are not the simple ranges of joint angles
defined in Scction 5. et R be the set of orientations in the grasp sct that define a slice and denote
the swept volume of A over R as A[R). Algorithms for approximating the swept volume over these
ranges can be based on the simple approach described in the Appendix. The impor..at constraint on
the approximation to A[R) is that it does not intersect the grasp s arfaces for positions of rv, on H.

In addition to the manipulator displacing and rotating, the manipulator's fingers may move per-
pendicular to the grasp surfaces. This additional degree of frcedom has not been discussed above. In
fact, it poses no additional problems; the motion of the fingers can be treated. via slice projection,
uniformly with rotation. ‘This simply requires including the space swept out by the fingers during

closing, in the swept volume used to define slices of the CO,(B;).

9.2. Overlap of Finger and Surface

The approach described above deals adequately with the CO.4(B;) in the definition of feasible
grasp sct, but is less succesful in dealing with COy-,(P;) and COp,(P;). The reason for this is that
a position in the slice projection of COy(P;) simply indicates that for some oricntation of A in the
slice, the finger is in contact with P;. What is requircd instead is the sct of positions which for all
orientations of A in the slice, there is contact. In fact, we would like to guarantee that the arca of

contact between the fingers and the grasp faces always exceeds some fixed arca. How this may be

accomplished is discussed below.,

il ciars

S i

33 Choosing Grasp Configurations

-
CIy(R)
S F,
4
t
|
‘ | xy

!
!
I,

a b .

Figure 13. Defining the configurations of A for which /™ overlaps . (a) THustration of the definition of T
and S. (b) lllustration of (.'l,}z'(l‘,) &3S, with two paositions of I’s reference vertex (indicated by the small

circles) showing the arca of overlap includes an arca of the form T, B s, for some s € S.

Let Fi and P, be, respectively, a finger surface and the corresponding grasp surface. We define
Tirtobea small strip at the tip of Fi, such that Fi = T, @ S. where S is the sct of points along a
linc segment, as shown in Figure 13. Again, we assume that the configurations of T} correspond to
those of F} (and thercforc A). Assume A is in some configuration ¢ € Ga(P;, P;), so that F} and P,
are coplanar, then CI7¥¥(P,) is the sct of (z, y, 2) configurations o Ty, and therefore of Fy and A,
for which Fx N P 2 T. But, we do not want to restrict the overlap between Fi and P, to be at the
fingertip; instcad, we want the arca of overlap to include sume area T, obtainable by translating T

along S, i.e. T, = Ti @ {8}, with s € S. It is casy to show that

r’

T e e et e

M Choosing Grasp Configurations

CIF(R)O S ={c|38€S: AN(F)e 2 (Te)- D {e} }

Therefore, this is the desired st of configurations, see Figure 13. This result can be applied to com-
pute the slices needed for the feasible grasp set. If R is the orientation range defining the slice, then
CI ;{fm(PI) © S|R] represents the sct of (z, y, z) configurations that, for orientations in R, guarantee
that the contact between Fi and P, includes T, Note that this approach can be genceralized to any S

and Ty such that F, = T, @ S; as T}, becomes smaller and approaches a point, then S approaches Fi.

9.3. Safety at the Destination

So far, the definition of FG(P;, P;) only cmbodics constraints relating to safety at P's initial
configuration, however a grasp configuration must also be safc at P’s final configuration. Clearly,
another feasible grasp set can be computed at P's final configuration, say FGa(P;, P}) where the
primed faccs indicate the faces at their final configuration. But, thesc two feasible grasp sets cannot
be intersected to obtain those grasp configurations that are safe for both configurations of P, be-
causc a grasp configuration corresponds to different manipulator configurations at cach different
configuration of P. What is nceded is a way of defining those grasp configurations in P’s initial
configuration that would lead to a collision when P is in its final configuration, Figure 14.

A grasp configuration cstablishes a fixed relationship between the fingers and the grasped part,
P. Let the final configuration of P be abtained by a displaccmnct consisting of a translation ¢ and a
rotation r, indicated by D,‘;(P). Clcarly, any set of positions X bears the same relationship to D, .(P)
as D;‘,'(X) bears to P. Therefore, if COZY*(B;) is a sct of positions of A which cause collisions at P's
final configuration, then D,T,' (COR¥*(B;)) represent infeasible grasp configurations, Figure 14. This
result also holds for swept volumes of A, thercfore it may be used to ensure safcty at the destination in

the dcfinition of feasible grasp sets.

9.4. Computing the Feasible Grasp Set

The discussion in the preceding subscctions is summarized in the following definition of feasible
grasp set, for some range of orientation in the grasp sct. We denote this oricntation range as R, and

fet I’ denote the same orientation range as R relative to P, but at P's destination. We also et (¢, 7) be

B e

"

35 Chowsing Grasp Configurations

:]
]

N

WL

d

Figure 14. (a) A sidc view of a manipulator hand, composed of a finger and a "paim”, hold-
ing P at the initial and final configuration. (b) In the initia) configuration, the shaded area
represents COPYH(P,) — U R CO%¥*(B,). i.c. the feasible grasp configurations for A, considering
only safety at the origin and letting T be a point. (c) The CO*(B,) for the final configuration
of A and P. (d) The shaded arca represents COEY(P) — U, CO¥(B)) U D (CO¥(By)).
which is the feasible grasp sct that takes into account safety at the destination.

36 Choosing Grasp Configurations

the displacement between the initial and final configurations of P. ‘Then, the feasible grasp set, for the

oricntation range R and displacement (¢, r), is:

FGR(Pi, Pj) = ((CIF(P) N CI35(P)) © Sik)) — U COZY5y(B;) U D/ (CORNy(By))
J

All of the clements in this definition can be computed using the CO*¥2 algorithm of Section 3.2 and a

swept volume algorithm,

9.5. Apprvach and Departure

Configurations in the feasible grasp sct, as defined above, are guaranteed to be safc both at P's
initial and final configuration. While these conditions are sufficicnt in most situations, they do not
guarantce that the feasible grasp configurations can be used during a "pick and place” operation. For
a feasible grasp configuration to be a legal grasp configuration, it must allow the manipulator to reach
and depart P’s initial and final configurations. Summarizing, the following conditions must hold for a
legal grasp configuration:

1. It must be possible to reach it from the initial configuration of the manipulator.
2. It must be possible to remove P from its initial configuration safely.

3. ltmust be possible to reach the P's final configuration with P held in the hand.
4. It must be possible to withdraw the manipulator from P’s final configuration.

The Findpath algorithm described in the precceding sections can be extended to deal with
the problem of choosing a grasping configuration that is reachable from the manipulator’s initial
configuration. As we saw above, the feasible grasp configurations, over some range of oricntations, are
those within some specified volume of C'space,, but outside the slice projections of suitably defined
Cspace, obstacles. Hence, they arc cquivalent to the slices, COSle, ¢] of Section 6.2. Therefore,
a free space representation for the feasible grasp configurations can be constructed and the resulting
free cells linked in the Free Space Graph. The feasible grasp configurations for alternative grasp
surfaces can also be linked into the graph. In the resulting FSG, any path from the cell containing

the origin to a cell containing a feasible grasp configuration shows that this grasp configuration may

37 Chosing Grasp Configurations

be reached from the origin. ‘T'he path scarching process must be modified to scarch for any cell
which contains a suitable grasp configuration, rather than scarching for a particular cell containing the
destination.

Similarly, departure from the origin and approach to the destination could be handled by testing
whether the destination is reachable, using the 1FSG constructed as above. The difference is that now
the hand is holding P, therefore the polyhedral description of P must be treated as if it were part of
the manipulator. ‘This requires adding a new sct of Cspace.y obstacles, arising from the interaction of
P and the objects in the workspace, to the onces alrcady computed for the manipulator. ‘This is entirely
analogous 10 modifying the description of the manipulator, which is alr.cudy modelled as a union of
convex solids. But, the geometric relationships between P and the A; arc determined by the grasp
configuration, which has several degrees of freedom. T'he problem can be approached by treating
these additional degrees of freedom, via slice projection, just as the wrist rotations were treated. This
approach imposes a great cost in additional computation. A simpler, though less gencral, technique is
to usc hceuristics in choosing a feasible grasp configuration and then tcst, via the path search process,
whether that grasp configuration permits departure. If it does not, a new configuration might be
chosen and the process repeated. This approach would be not be adequate for very cluttered environ-
ments or situations involving parts mating at the destination. In such environments an approach based

on slice projection would also be susceptible to failure. Further rescarch is nceded in this area.

9.6. Stability in Grasping

We have thus far not considered the issuc of stability of the feasible grasp point. An adequate
treatment of stability in grasping is not yet available, although some promising approaches exist [S].
The techniques described in this section can be used to implement two simple grasping heuristics,
which work adequalely when (1) the manipulator hand is made up of rigid fingers, (2) the object to be
grasped, P, is small relative to the manipulator hand and (3) parts mating cffects arc ignored. The two
heuristics are:

1. Ensure at lcast a minimum contact arca of the fingers with the grasp surfaces. The amount

of overlap should depend on object propertics such as weight and surface smoothness.

38 ‘The ¥iffect of Uncertainty

2. The perpendicular projection of P's center of mass should be near to F; N P; and F; N P

The implementation of the contact arca heuristic was discussed above, Section 9.2. The center
of mass heuristic can be implemented by giving preference to grasp surfaces for which the center of
mass, projected onto the plane containing P, falls within Py and similarly for P;. Furthermore, for
specificd grasp surfaces, the choice among legal grasp configurations should minimize the distance of
the prjection of the center of mass to the area of overlap between finger ahd grasp surface.

‘These heuristics, though adequate for many tasks, are not a substitute for a general theory of

stability in grasping. This remains one of the most interesting open problems in robotics.

10. ‘The Effect of Uncertainty

In the preceeding sections we have assumed that:

1. the configuration of all the objects is known exactly, and
1. the configuration of the manipulator can be controlled exactly.

Both of these assumptions are only approximations to reality. In practice, configurations can only
be known to within some uncertainty. Both of these sources of uncertainty affect what manipulator

motions are safe.

10.1. Modelling Worst-Case Uncertainty in Cspaces

In Cspace,, the two sources of uncertainty have similar effects, i.c. modifying the shape of the
Cspaces obstacles. This section deals with techniques for taking into account these effects. The
following notation is uscful in the discussion, Lete = (8;) = (A, ..., Bn) € R™ and similarly, let
configurations be (%) = (m, ,n) € R™ The index set {1,...,n} will be referred to as [; let
K C I. The set Uk(e) denotes the sct of configurations in Cspaces whose K -parameters are less than

the absolute value of the corresponding parameter of e.

—B<vu<B IifiekK

v =0, otherwise

(%) € Ukle) = {

39 The Eftect of Uncertainty

Uncertainty in the configuration of A in Cspace,, can be represented as a region around its
nominal configuration, c; within this region are all the configurations that A may be in. Simple regions
can be characterized by {c} € Ui (eq). Assume that (A), N\ B # 8, i.c that a € COA(B). Any
nominal configuration a’ such that a’ 4 z = a, for z € Uy (e.), should also belong to COA(B). This
means that under uncertainty of A, CO,(B) should be replaced with CO4(B) © Uc(ea). In practice,
we do not ever compute CO,\(B): rather, we compute slice projections of it using the swept volume
of A over ranges of orientation parameters, . Therefore the orientation and translation uncertainty
must be treated separately. Orientation uncertainty affects the definition of the manipulator’s swept
volume. For cxample, to compute a slice with parameters [c, ¢/] . the swept volume Ale—e,, -+ealr
is used in place of Alc,). The cffect of the uncertainty in the translation parameters, T, can be
computed as indicated in Scction 5.1, using the CO’¥*(B) algorithm.

The worst-case cffect on CO4(B)) of un.ertainty in the configuration of the Bj, can be modelled
by replacing B with the swept volume of B over the uncertainty range. Alternatively, if the uncer-
tainty in the configuration of B; can be approximated by an uncertainty in translation’3 , Ur(eg,) then
the uncertainty of A and B can be combined into a single uncertainty!? and treatcd as the uncertainty

of A. If T is the set of indices for translation parameters, then the combincd uncertainty is:

Ur(€,) = Ur(es,) © Ur{ea)

10.2. The Effect of Uncertainty on "Pick and Place” Synthesis

‘The presence of uncertainty significantly affects manipulator programming in gencral and the
synthesis of "pick and place” motions in particular. One approach to planning motions in the
presence of uncertainty is to plan paths that arc safc under the worst casc unccrtainty, i.e. paths
outside the expanded Cspace, obstacles defined above. ‘This approach rules out most operations
that involve moving near objects, ¢.g. grasping. Another approach is to assume that uncertainty

does not significantly affect the outcome of most operations and to plan motions assuming nominal

¥Phis can be done by defining a ncw translation uncertainty such that the swept volume over this range of positions
will contain the swept volume over the onginal uncertainty range.

14 Ihis assumcs that the translation space of the manipulator is the same as that of the objects in the workspace, which
is truc for carlcsian manipulators.

40 The 1icet of Lncenainty

configurations. A compromisc position is to redcfine the "pick and place™ synthesis problem so as to
isolate those opcerations that are most susceptible to uncertainty from those others where uncertainty
plays a relatively minor role. The latter can be addressed by the techniques outlined in this paper, the
former require a different approach. One possible re-definition of the "pick and place” problem is the
following:

1. Find a nominal grasp configuration assuming that there is no uncertainty.

2. Identify a grasp approach configuration, a configuration that can be shown to be safe under

worst-case uncertainty estimates for object and manipulator configuration.

3. \dentify a grasp deproach configuration, a configuration which is safe for the manipulator
grasping the part, given the uncertainty in the part's configuration after grasping and the uncer-

tainty in configurations of ncarby objects.

4, Computé a path, from the manipulator's initial configuration to the grasp approach

configuration, assuming worst-casc uncertainty.

5. ldentify a destination approach configuration, a configuration which is safe for the manipulator
holding the object, given the uncertainty in the grasp configuration and the uncertainty of

necarby objects.

6. Compute a safc path from the grasp deproach configuration to the destination approach

configuration for the manipulator and the grasped part, also assuming wort-case uncertainty.

7. 1dentify a destination depproach configuration, a configuration which is safe for the

manipulator, given the uncertainty of nearby objects.

‘This formulation of the synthesis problem factors out the problems of approaching and deproach-
ing both the nominal grasp configuration and the destination. For both of these problems, the use
of sensory information to identify the actual state of the task and to accomodate to it is important
{25] [30] [44). When the uncertainty is small, the problem can be dealt with by ad hoc methods,
c.g. opening the fingers very wide and relying on the grasping action to place the object and/or

thc manipulator in approximately the correct oricntation [19). ‘The gencral problem of planning

manipulator operations that are robust in the face of uncertainty is an important problem [+], but

W

41 Summary

beyond the scope of this paper.

1. Summary

"This paper has presented an approach to the central geometric problems underlying the synthesis
of "pick and place™ motions for cartesian manipulators. ‘I'he key technique in the approach is the use
of explicit polyhedral representations of the configuration constraints on the manipulator. This repre-
sentation permits the use of simple and powerful geametric operations to solve problems involving
safe motions of the manipulator. In particular, the problems of finding grasp configurations and safe
paths in the absence of uncertainty.

‘The concepts of Configuration Space and Configuration Space Qbstacle have played a central role
in the approach to gross motion synthesis developed here. Similar concepts play an important role in
the approach to compliant motion synthesis described in [30]. These concepts have also proven uscful

in other geometric applications [1]|2] [4] [45).

Acknowledgements
All of this paper, in particular the section on choosing grasp configurations, has bencfited greatly
from the criticism, insights, and suggestions of my colleague, Matt Mason. | would also like to thank

Mike Brady, John Hollerbach, Berthold Horn, and Patrick Winston for reading drafts of this paper

and, in general, for their help and encouragement.

42 References

References

{1] Adamowicz, M, The optimum two-dimensional allocation of irregular, multiple-connected shapes
with lincar, logical and gcometric constraints, PhI) Thesis, Department of Electrical Engincering,
New York University, 1970.

{2] Adamowicz, M and Albano, A. "Nesting two-dimensional shapes in rectangular modules,” Computer
Aided Design 8, 1 (Jan 1976), 27-32.

(3] Ahuja, N; Chien, R T; Yen, R and Bridwell, N. "Interference Detection and Collision Avoidance
Among Three Dimensional Objects,” First Annual National Conference on Artificial Intelligence
, Stanford University, August 1980,

{4] Albano, A and Sapuppo, G. "Optimal Allocation of Two-Dimensional Irregular Shapes Using
Heuristic Scarch Methods,” IEEE Transactions on Systems, Man, and Cybernetics SMC-10, §
(May 1980), 242-248.

[5] Asada, H. "Studics in Prehension and Handling by Robot Hands with Elastic Fingers,” University
of Kyoto, 1979.

[6] Baumgart, B G. "Geometric Modelling for Computer Vision,” Stanford Artificial Intclligence
Laboratory, Memo 249, October 1974,

[7] Boyse, J W. “Interference Detection Among Solids and Surfaces,” Communications of the ACM
22, 1 (January 1979), 3-9.

[8] Dyer, C R; Rosenfeld, A and Samet, H. "Region Representation: Boundary Codes from Quadtrees,”
Communications of the ACM 23, 3 (March 1980), 171-179.

[9] Eastman, C E. "Representations for Space Planning,” Communications of the ACM 13, 4 (April
1970), 242-250.

(10} Finkel, R; Taylor, R; Bolles, R; Paul, R; and Feldman, J. "AL, A Programming System for
Automation,” Stanford Artificial Intelligence Laboratory, AIM-177, Nov 1974,

[11] Freeman, H. "On the Packing of Arbitrary-Shaped Templates," Second USA-Japan Computer
Conference , 1975, 102-107.

[12) Giralt, G; Sobek, R and Chatila, R. "A Multilcvel Planning and Navigation System for a Mobile
Robot," Sixth Internai:onal Joint Conference on Artificial Intclligence , Tokyo, Japan, August
1979, 335-338.

{13]) Golden, B. "Shortest Path Algorithms: A Comparison,” Operations Research 24, 6 (November
1976), 1164-1168,

[14] Grunbaum, B. Convex Polytopes , Wiley Interscience, New York, 1967.

43 Relerences

[15} Hart, P Nilsson, N and Raphael, B. "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths," [EEEFE Transactions on System Science and Cybernetics SSC-4, 2 (July
1968), 100-107.

[16] Howden, W E. "The Sofa Problem,” Computer Journal 11, 3 (November, 1968), 299-301.

[17] Hunter, G M and Steiglitz, K. "Linear Transformation of Pictures Represented by Quad ‘Trees,”
Computer Graphics and Image Processing 10, (1979), 289-296.

[18] Hluater, G M and Steiglite, K. "Operations on linages Using Quad Trees,” IEEFE Transactions on
Pattern Analysis and Machine Intelligence PAMI-1, 2 (April 1979), 145-153.

[19} Inoue, H. "Force Fecdback in Precise Assembly Tasks,” MIT Artificial Intelligence Laboratory,
AIM-308, August 1974.

{20} Klinger, A and Dyer, C R. “"Experiments on Picture Representation Using Regular Decomposition,”
Computer Graphics and Image Processing S, 1(1976), 68-10S.

{21} Korn, G A and Korn, T M. Mathematical Handbook for Scientists and Engineers , McGraw Hill,
New York, 1968.

[22) Larson, R C and Li, ¥ O K. "Finding Minimum Rectilincar Distance Paths in the Presence of
Obstactes,” MIT Operations Research Center, OR 038-79, May 1979.

[23] Lewis, R A, "Autonomous Manipulation on a Robot: Summary of Manipulator Software
Functions,” Jet Propulsion Laboratory, California Institute of Technology, TM 33-679, March
1974.

{24} Licherman, 1. and Wesley, M A. "AUTOPASS: An Automatic Programming System for Computer
Controlled Assembly,” IBM Journal of Research and Development 21, 4 (July 1977).

[25] Lozano-Perez, T. "The Iesign of a Mechanical Assembly System,” MIT Artificial Intelligence
Laboratory, 1'R-397, Dec 1976. :

[26} Lozano-Perez, T and Winston, P H. "LAMA: A Language for Automatic Mcchanical Assembly,”
Fifik International Joint Conference on Artificial Intelligence , Massachusctts Institute of Techno-
logy, August 1977, 710-716.

127] Lozano-Perez, ‘I, “Spatial Planning: A Configuration Space Approach,” /EEE Transactions on
Computers (o appear).

[28] Losano-Peree, T and Wesley, M A. "An Algorithm for Planning Collision-Free Paths among
Polyhedral Obstacles,” Communications of the ACM 22, 10 (October 1979), 560-570.

[29] Marr, D and Nishihara 11 K. "Representation and Recognition of the Spatial Organization of
‘Three Dimensional Shapes,” MIT Artificial Intelligence Laboratory, AIM-416, May 1977.

{30] Mason, M T. "Compliance and Force Control for Computer Controlled Manipulators," MIT

hislclinticning iy

44 References

Artificial Intelligence Laboratory, TR-515, April 1979.

[31] Mathur, G. "The Grasp Planner,” Department of Artificial Intelligence, University of Edinburgh,
DAI Working Paper 1, 1974,

{32] Moravec, H P. "Visual Mapping by a Robot Rover," Proceedings Sixth International Joint
Conference on Artificial Intelligence , Tokyo, Japan, August 1979,

(33] Nilsson, N. "A Mobile Automaton: An Application of Artificial Intelligence Techniques,”
Proceedings International Juint Conference on Artificial Imelligence , 1969, 509-520.

[34) Park, W T. "Minicomputer Software Organization for Control of Industrial Robots,” Joint
Automatic Control Conference , San Francisco, 1977,

[35]) Paul, R P. "Modeclling, Trajectory Calculation and Servoing of a Computer Controlicd Arm,"”
Sranford Artificial ntelligence [.aboratory, AIM-177, November 1972,

(36] Paul, R P. "Manipulator Cartesian Path Control,” 1EEE Transactions on Systems, Man, and
Cybernetics SMC-9, 11 (November 1979), 702-711.

[37} Pfister, G. "On Solving the FINDSPACE Problem, or How to Find Where Things Aren't,” MIT
Artificial Intelligence l.aboratory, Working Paper 113, March 1973.

{38] Popplestone, R J. "Specifying Manipulation in Terms of Spatial Relationships,” Department of
Artificial Intelligence, University of Edinburgh, No. 117, June 1979.

[39] Popplestone, R J; Ambler, A P and Bellos, I M. “An Interpreter for a Language for Describing
Assemblies,” Artificial Intelligence 14, 1 (1980), 79-107.

{40] Popplestone, R J; Ambler, A P and Bellos, | M. "RAPT: A Language for Describing Assemblies,”
Industrial Robot 5, 3 (1978), 131-137.

[41] Preparata, F and Hong, S. "Convex Hulls of Finite Sets of Point in Two and Three Dimensions,”
Communications of the ACM 20, 2 (Feb 1977), 87-93.

{42] Reddy, D R and Rubin, S. "Representation of Three-Dimensional Objects,” Department of
Computer Science, Carncgic-Mellon University, CMU-CS-78-113, April 1978.

[43]) Samet, H. "Region Representation: Quadtrees frofn Boundary Codes,” Communications of the
ACM 23, 3 (March 1980), 163-170,

(44] Simunovic, S N. "Force Information in Assembly Processes,” Fifth International Symposium on
Industrial Robois , September 1975.

[45] Stoyan, Y G and Ponomarcnko L D, A Rational Arrangement of Geometric Bodies in Automated
Design Problems,” Engineering Cybernetics 16, 1 (January 1978).

(46] Taylor, R. "A Synthesis of Manipulator Control Programs from Task-Level Specifications,”
Stanford Artificial Intcligence Laboratory, AIM-282, July 1976.

—

45 References

{47] ‘Thompson, A M. *I'he Navigation System of the JPL. Robot." Fifth International Joint Conference
on Artificial Intelligence . Massachusctts Institute of '['echnology, 1977.

[48) Udupa, S. “Collision Detection and Avoidance in Computer Controlled Manipulators,” Fifth
International Joint Conference on Artificial Intelligence , Massachuscus Institute of Technology,

1977.

[49] Udupa, S. Collision Detection and Avoidance in Computer Controlled Manipulators, PhD
‘Thesis, Department of Electrical Engincering, California Institute of Technology, 1977.

[50) Widdoes, C. "A Heuristic Collision Avoider for the Stanford Robot Arm,” Stanford Artificial
Intclligence Laboratory, 1974,

[51} Wingham, M. Planning How to Grasp Objects in a Cluttered Environment, M. Phil Thesis,
Department of Artificial Intelligence, University of Edinburgh, 1977.

A Polyhedral Approximation for Swept Volume

N\
\ AN
N N
\ N\
N\ N
N N
\\ \
N\ AN
AN N\
N
AN
N
N\
i AY
N\
i Figute 15, ‘The WEDGE is a convex polyhedron used to approximate the volume swept out by 8 cuboid
aligned with the coordinate axes, as it rotates around the z axis, assuming the z axis docs not penetrate the

cuboid.

Appendix 1. A Polyhcdral Approximation for Swept Volume

The swept volume is the volume occupicd by a polyhedron over a set of configurations, ¢.g. along
some path, The swept volume over a range of translations can be computed using the CO*Y* algo-

rithm. In this appendix, we will limit our attention to computing a simplc polyhedral approximation

to the swept volume for rotations of a polyhedron around an arbitrary axis, This method is included

here for complcteness, it is not the best polyhedral approximation to the swept volume.

The swept volume approximation described here returns a list of convex polyhedra of two types:

1. CYLINDER — a polyhcedral approximation to a right circular cylinder.

47 A Polyhcdral Approximation for Swept Volume

ax

b
RB(B)

Figure 16. Computing a polyhedral approximation to the swept volume under pure rota-
tion.

i e T ST —

fr, ,‘ - : T “.;.:.w::a%

F . 1

48 A Polyhedral Approximation for Swept Volume

2. WEDGE — a polyhedral approximation to the volume swept out by a cuboid, aligned with
the coordinate axcs, as it rotates around the 2 axis, Figure 15. It assumes that the z axis does

not penctrate the cuboid and that the rotation is less than «.

The input is a polyhedron, B, an axis of rotation which is the 2 axis of a reference frame and 8,
the angle of rotation. The first step is to rotate the frame around z so that the z axis goes through
the centroid of the projection of B on the (z, y)-planc of the frame. Compute an aligned bounding
rectangular solid for B, RB(B). whose dimensions are (Az, Ay, Az). If the z axis docs not pass
threugh the object, then if @ << 6., < x then simply return a WEDGE enclosing the swept volume.
If the z axis penetrates RB(B), then if Az > Ay, cut B using the planes z = -A,“ andz = -'—',‘H.

and return a cylinder of radius v/2Ay whose height is Az and return the swept volumes of the pieces

of B beyond the central area. The procedure is similar if Ay > Az. Figurc 16 illustrates this

process. Here 0,45 is some user specified parameter, although it could be chosen to guarantec some

kind of crror bound. If @ > 6,,.x. then divide the rotation into a set of successive rotations ¢ach

returning a wedge:

